\(\int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [230]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 175 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a (6 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {8 a (6 A+7 B) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {16 a (6 A+7 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

2/7*a*A*sin(d*x+c)/d/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2)+2/35*a*(6*A+7*B)*sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a
+a*sec(d*x+c))^(1/2)+8/105*a*(6*A+7*B)*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+16/105*a*(6*A+7*B)
*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {4100, 3890, 3889} \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a (6 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {16 a (6 A+7 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{105 d \sqrt {a \sec (c+d x)+a}}+\frac {8 a (6 A+7 B) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]

[Out]

(2*a*A*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) + (2*a*(6*A + 7*B)*Sin[c + d*x])/(35*d*
Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) + (8*a*(6*A + 7*B)*Sin[c + d*x])/(105*d*Sqrt[Sec[c + d*x]]*Sqrt[a
 + a*Sec[c + d*x]]) + (16*a*(6*A + 7*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(105*d*Sqrt[a + a*Sec[c + d*x]])

Rule 3889

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[-2*a*(Co
t[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rule 3890

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[a*Cot[e
 + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[a*((2*n + 1)/(2*b*d*n)), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{7} (6 A+7 B) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a (6 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{35} (4 (6 A+7 B)) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a (6 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {8 a (6 A+7 B) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {1}{105} (8 (6 A+7 B)) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a (6 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {8 a (6 A+7 B) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {16 a (6 A+7 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.52 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a \left (15 A+3 (6 A+7 B) \sec (c+d x)+4 (6 A+7 B) \sec ^2(c+d x)+8 (6 A+7 B) \sec ^3(c+d x)\right ) \sin (c+d x)}{105 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]

[Out]

(2*a*(15*A + 3*(6*A + 7*B)*Sec[c + d*x] + 4*(6*A + 7*B)*Sec[c + d*x]^2 + 8*(6*A + 7*B)*Sec[c + d*x]^3)*Sin[c +
 d*x])/(105*d*Sec[c + d*x]^(5/2)*Sqrt[a*(1 + Sec[c + d*x])])

Maple [A] (verified)

Time = 4.33 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.57

method result size
default \(\frac {2 \left (15 A \cos \left (d x +c \right )^{3}+18 A \cos \left (d x +c \right )^{2}+21 B \cos \left (d x +c \right )^{2}+24 A \cos \left (d x +c \right )+28 B \cos \left (d x +c \right )+48 A +56 B \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{105 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(100\)
parts \(\frac {2 A \left (5 \cos \left (d x +c \right )^{3}+6 \cos \left (d x +c \right )^{2}+8 \cos \left (d x +c \right )+16\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{35 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}+\frac {2 B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \sin \left (d x +c \right )+4 \tan \left (d x +c \right )+8 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}\) \(141\)

[In]

int((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

2/105/d*(15*A*cos(d*x+c)^3+18*A*cos(d*x+c)^2+21*B*cos(d*x+c)^2+24*A*cos(d*x+c)+28*B*cos(d*x+c)+48*A+56*B)*(a*(
1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*tan(d*x+c)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.63 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, {\left (15 \, A \cos \left (d x + c\right )^{4} + 3 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{2} + 8 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

2/105*(15*A*cos(d*x + c)^4 + 3*(6*A + 7*B)*cos(d*x + c)^3 + 4*(6*A + 7*B)*cos(d*x + c)^2 + 8*(6*A + 7*B)*cos(d
*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x + c)))

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 498 vs. \(2 (151) = 302\).

Time = 0.53 (sec) , antiderivative size = 498, normalized size of antiderivative = 2.85 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

1/840*(3*sqrt(2)*(105*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 35*c
os(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 7*cos(2/7*arctan2(sin(7/2*d
*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 105*cos(7/2*d*x + 7/2*c)*sin(6/7*arctan2(sin(7/2*d*
x + 7/2*c), cos(7/2*d*x + 7/2*c))) - 35*cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x
 + 7/2*c))) - 7*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 10*sin(7/2
*d*x + 7/2*c) + 7*sin(5/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 35*sin(3/7*arctan2(sin(7/2*d*
x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 105*sin(1/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))))*A*sqrt(
a) + 14*sqrt(2)*(30*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) + 5*cos(
2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 30*cos(5/2*d*x + 5/2*c)*sin(4/
5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*cos(5/2*d*x + 5/2*c)*sin(2/5*arctan2(sin(5/2*d*x +
5/2*c), cos(5/2*d*x + 5/2*c))) + 6*sin(5/2*d*x + 5/2*c) + 5*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x
+ 5/2*c))) + 30*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*B*sqrt(a))/d

Giac [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 16.13 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.74 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (420\,A\,\sin \left (c+d\,x\right )+490\,B\,\sin \left (c+d\,x\right )+126\,A\,\sin \left (2\,c+2\,d\,x\right )+36\,A\,\sin \left (3\,c+3\,d\,x\right )+15\,A\,\sin \left (4\,c+4\,d\,x\right )+112\,B\,\sin \left (2\,c+2\,d\,x\right )+42\,B\,\sin \left (3\,c+3\,d\,x\right )\right )}{420\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(7/2),x)

[Out]

(cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x))^(1/2)*(420*A*sin(c + d*x) + 490*B*s
in(c + d*x) + 126*A*sin(2*c + 2*d*x) + 36*A*sin(3*c + 3*d*x) + 15*A*sin(4*c + 4*d*x) + 112*B*sin(2*c + 2*d*x)
+ 42*B*sin(3*c + 3*d*x)))/(420*d*(cos(c + d*x) + 1))